Multiple ATP-hydrolyzing sites that potentially function in cytoplasmic dynein.
نویسندگان
چکیده
Cytoplasmic dynein is a minus-end-directed microtubule motor involved in numerous essential processes within eukaryotic cells, such as nuclear segregation and trafficking of intracellular particles. The motor domain of the dynein heavy chain comprises six tandemly linked AAA (ATPase associated with diverse cellular activities) modules (AAA1-AAA6). The first four modules include nucleotide-binding sites (Walker A or P-loop motifs), and each of the four sites appears to bind ATP. However, the role and the function of each binding site are unknown. Especially, the question of which P-loops are ATP-hydrolyzing sites has not been answered, because it is difficult to measure the ATPase activity of each P-loop. Here, we purified several truncated Saccharomyces cerevisiae cytoplasmic dynein fragments and their mutants expressed in Escherichia coli and then measured their ATPase activities. Our results suggest that there are multiple ATP-binding sites that have abilities to hydrolyze ATP in cytoplasmic dynein. Furthermore, a single AAA module is insufficient for ATP hydrolysis, and the adjacent module facing the ATP-binding site is necessary for ATP-hydrolyzing activity.
منابع مشابه
Monte Carlo modeling of single-molecule cytoplasmic dynein.
Molecular motors are responsible for active transport and organization in the cell, underlying an enormous number of crucial biological processes. Dynein is more complicated in its structure and function than other motors. Recent experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo s...
متن کاملModel for bidirectional movement of cytoplasmic dynein.
Cytoplasmic dynein exhibits a directional processive movement on microtubule filaments and is known to move in steps of varying length based on the number of ATP molecules bound to it and the load that it carries. It is experimentally observed that dynein takes occasional backward steps and the frequency of such backward steps increases as the load approaches the stall force. Using a stochastic...
متن کاملThe third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding.
Sequence comparisons and structural analyses show that the dynein heavy chain motor subunit is related to the AAA family of chaperone-like ATPases. The core structure of the dynein motor unit derives from the assembly of six AAA domains into a hexameric ring. In dynein, the first four AAA domains contain consensus nucleotide triphosphate-binding motifs, or P-loops. The recent structural models ...
متن کاملRegulatory ATPase Sites of Cytoplasmic Dynein Affect Processivity and Force Generation*S⃞
The heavy chain of cytoplasmic dynein contains four nucleotide-binding domains referred to as AAA1-AAA4, with the first domain (AAA1) being the main ATP hydrolytic site. Although previous studies have proposed regulatory roles for AAA3 and AAA4, the role of ATP hydrolysis at these sites remains elusive. Here, we have analyzed the single molecule motility properties of yeast cytoplasmic dynein m...
متن کاملCytoplasmic dynein light intermediate chain is required for discrete aspects of mitosis in Caenorhabditis elegans.
We describe phenotypic characterization of dli-1, the Caenorhabditis elegans homolog of cytoplasmic dynein light intermediate chain (LIC), a subunit of the cytoplasmic dynein motor complex. Animals homozygous for loss-of-function mutations in dli-1 exhibit stochastic failed divisions in late larval cell lineages, resulting in zygotic sterility. dli-1 is required for dynein function during mitos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 35 شماره
صفحات -
تاریخ انتشار 2004